PREPARATION AND STRUCTURES OF SOME NOVEL, SELENIUM-IODINE CATIONS

J. Passmore*, W. A. S. Nandana, P. S. White

Department of Chemistry, University of New Brunswick, Bag Service #45222, Fredericton, N.B. E3B 6E2 (Canada)

We recently prepared quantitatively, and determined the crystal structure of $S_2I_4(AsF_6)_2$. In this salt the $S_2I_4^{2+}$ has a distorted right triangular prismatic structure, with the S-S and I-I distances indicative of bond orders 2.33 and 1.33 respectively. In fact, the S-S distance [1.83(1) A] is the shortest observed distance in an isolated compound, and therefore the $S_2I_4^{2+}$ cation contains a much sought after $3p\pi-3p\pi$ bond. We speculated that the geometry of $S_2I_4^{2+}$, that maximises π bonding within the cation, might be a consequence of the near equality of the ionisation potentials of S_2 [9.36(2) eV] and I_2 [9.3995(1) eV]. To explore this hypothesis, we attempted to synthesise analogous cations. In one reaction we prepared $Se_2I_4(Sb_2F_{11})_2$ [I.F. Se 8.33(3) eV] essentially quantitatively from elemental selenium and $I_2Sb_2F_{11}$. The structure of $Se_2I_4^{2+}$ can be viewed as two eclipsed SeI_2^+ units joined by a long $Se_2Se_2^+$ [2.84(1) Å], similar in length to the transangular bond in Se_8^{2+} [2.84(1) Å] and considerably longer than that in Se_8 [2.336(6) Å]. The geometry of $Se_2I_4^{2+}$ is similar to that of the isoelectronic $S_2O_4^{2-}$ the bonding in which has been the subject of interest and controversy for some years. In an attempt to prepare $S_7I^+MF_6^-$ [M = As, Sb], [Se₆I⁺]-[MF6] were prepared containing the poly-iodo-cyclo-hexaselenium cation. The hexaselenium rings of a chair conformation are joined to two neighbouring hexaselenium rings by two weak [2.736(3) Å] exocyclic 1,4-axial selenium-iodine bonds. Another selenium-iodine cation will also be discussed.